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CHAPTER I. INTRODUCTION

Every ionospheric parameter varies in space and time. Given the spar-
city of ionospheric observing stations and the cost factors associated with
creating new ones, one must often resort to prediction schemes in order to
have an estimate for a particular parameter. Given the fact that an observed
parameter (P,(t)) is not the same every day, one can define a mean or median
diurnal pattern 5;?27 for each month. The standard deviations for the

observed P,(t) may be denoted 0o(t), and thus a month's worth of observa-

tions at a given site {P,(t)} may be described in the average as Po

() %
oo(t).

The crux of the problem facing ionospheric forecasters centers on the
need to kﬁow the diurnal values of P at a site where observations are not
available. The main approach to this problem has centered on the use of
large ionospheric data bases, I {Po(t)}, which are analyzed in statistical
ways to search for trends and correlations which may aid the long and short
term needs of forecasters. The main goals a statistical analysis of iono-
spheric data can hope to achieve with respect to the formulation of prediction
schemes are:

(1) Specification of the magnitudes of the standard deviations for

each parameter, and thus the determination of whether or not
predictions of average monthly behavior ?F?EYY can realistically
address the needs of individual users.

(2) A search for statistically significant patterns of ionospheric

variability and thus reduce the uncertainty implied by the % o,

values attached to any predicted P(t) curve.




(3) An examination of the correlations between ionospheric vari-
ability seen at different sites in order to extend individual
measurements to cover a wider geographical area.

A great many studies have been carried out in each of these areas, and
thus approaches toward realistic prediction schemes have been formulated for
several ionospheric parameters. Rush (1973) has reviewed the situation for
short-term predictions of radio propagation conditions at mid-latitudes by
examining hourly critical frequencies for the E, F1 and F2 regions (i.e.,
foE, foFl and f F2, respectively). For the E-region during the 0900-1500
LT period, the observed standard deviations for foE (0o expressed in percent
with respect to a monthly median) were generally less than 6% -- implying
that 95% of all observations lie within * 127 of their median value. For
foFl, the 0,(%) were found to be only slightly more variable with the dif-
ference being greatest during solar maximum years. The conclusion reached
by Rush was that for most needs the day-to-day variability of foE and f_F1
is such that monthly median (or mean) values can be used to represent the
diurnal variations. This implies that forecasters' attention should be
given to the methods of predicting average behavior, rather than to ways of
taking into account the inherent variability of the E and F1 regions. This
has, in fact, been a fruitful avenue in that the median values of f,E and
foFl at mid-latitude can, for the most part, be predicted to within an
accuracy of * 5% (Muggleton, 1972; DuCharme et al., 1971).

For the F2 region, the situation is quite the opposite. Rush (1976),
for example, suggests that an average value of *15% provides a good estimate
for the standard deviations observed in foFZ behavior at mid-latitudes,

regardless of local time, season or solar cycle conditions. It should be

e ——
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emphasized that while the experimentally-measured and propagation system-
dependent parameter is often a critical frequency, e.g., foFZ (in MHz),

the physically important parameter from a modeling point of view is the
electron density (Ng, in #el/cm3). Since a critical frequency or plasma
frequency , fp, is related to electron density by fp(MHz) = {9 N, (lOGellcm3)}%,
the variabilities in the maximum electron density, o,(Nm), of each ionospheric
region (NmE, NmF1l, NmF2) are proportionally larger than those quoted for

their respective critical frequencies (foE, foFl, £, F2).

Some ionospherically-affected propagation systems depend on the electron
densities themselves and thus their relatively large standard deviations about
average monthly conditions become the variability factor of prime concern.

For example, satellite navigation and detection radar systems can be limited
in accuracy by the time delay imposed upon their RF signal's passage through
the entire ionosphere. The total number of electrons contained along a
vertical ray path through the ionosphere is called the Total Electron Content
(TEC), a parameter capable of being measured routinely by satellite radio
beacon techniques (Titheridge, 1972). Since 90% or more of the TEC occurs
in the F2 region, the large TEC data base which has been assembled since the
mid-1960's is a valuable source for F2 region studies. Recently, Johanson
et al. (1977) described a study of TEC day-to-day variability effects by
analyzing the observed standard deviations, o, (%), from monthly mean TEC
behavior recorded at an ll-station network in the northern hemisphere. They
concluded that TEC variability, as described by o,(%), was approximately %
25% with only small additional dependences upon local time, season, latitude
and solar flux conditions. Hawkins and Klobuchar (1974) showed that for a
single mid-latitude site (Sagamore Hill/Hamilton MA), the monthly mean

diurnal curve for TEC may be predicted via a simple relationship between

i




TEC and solar flux which has a correlation coefficient higher than 0.9 for
all months. This suggests that, at least for mid-latitudes, a forecaster's
attention should not be directed toward improved prediction schemes for
average behavior, but rather toward the search for ways to predict (or
correct for) the inherent day-to-day variability of the F-region. This, as
we have seen, is precisely the opposite view facing E and Fl region prognos-

ticators.




CHAPTER II. POSSIBLE APPROACHES TO THE VARIABILITY QUESTION

As discussed in the previous section, we may assume that a prediction
for the monthly mean diurnal behavior of an F2-region parameter (Nmax or
TEC) is available. We denote this prediction F{t) and attach to it some
error (+e) from the observed mean behavior F;(t). Associated with f;(t) is
an observed standard deviation *0,; it is generally agreed that |e| < [o| by
approximately a factor of 2. Thus, as a first approach to modifying a monthly
prediction §kt) for day-to-day variability effects, it makes good sense to
concentrate on reducing the impact of the magnitude of o,.

Rush (1976) considered the case for short-term predictions of f_ F2 via
real-time updates from a network of stations. Correlation coefficients for
Af F2 were obtained as a function of station separation distances for a full
range of local time, seasonal and north-south vs. east-west conditions.
These results were used to test the concept of using real-time measurements
at one site to update monthly median-based predictions at another site. Thus,
consider the case that at site A data are available while at site B only §Kt)too
exists. Based on percentage departures from median conditions at A, F(t)+P'(t)
at B. Depending upon the separation between A and B, this update can reduce
the uncertainty at B associated with its monthly median prediction, that is,

o > o'. Rush found that for o, to be reduced by 50%, the approximate separa-

o o
tion distances for such an extrapolation/update had to be less than 500km for
north-south sites and 1000 km for east-west sites. Thus, it was concluded
that to achieve this degree of improvement under most conditions at mid-lati-

tudes an observational network would be required capable of reporting real-

time ionospheric measurements from a global grid 10° in latitude and 20°

in longitude. In a broad sense, this represents ''state of the art" conclusions




‘for the day to day variability problem.

II. 1, E-Region €onsiderations

One approach to F-region variability is to examine the related E-region
effects. To do this, the daily values of NmE and NmFZ from Wallops Island
and TEC from Sagamore Hill were plotted together with their respective monthly
means for the first half of 1968, The year 1968 was chosen since the E-region
data is more nearly complete closer to the peak of the solar activity cycle.
Figures 1 and 2 are representative examples of the type of computer plots con-
structed.

The initial scanning of many individual plots revealed only one type of
correlation between the E and F region variabilities. The effect is illustrated
in Figures 1 and 2 between the NmE and NmFZ ionosonde data (L=2). A distinct

180° phase difference between the E and F region fluctuations suggests that

these fluctuations are of gravity wave origin.
The percent deviations from the monthly means, averaged over the 1100
to 1300 local time period, for each day of various months were also plotted.
Such data for January 1968 are shown in Figure 3. The solid line represents
the daily data and the X's represent 3-day smoothing. Comparisons of the smoothed
curves for NmE and NmFZ show a phase lead of approximately 3 days for long-term
E-region fluctuations relative to the F-region fluctuations. This time delay
is of the same order as the lifetime of atomic oxygen at F-region heights which
produces the dominant ion. Hence, this variation suggests the cause is fluctu-
ations in the neutral composition, particularly in the oxygen concentrations.
The further study of correlations between the E and F regions was

limited by the unanticipated poor quality of the foE measurements available to us.

Our preliminary work did, however, suggest that important physical links are present.
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II, 2, F~ Region Considerations

An aspect of F-region behavior long associated with the variability
question is the role geomagnetic activity plays in determining the magnitudes

of o, at any given site. A great many studies have been carried out con-

o

cerning ionospheric storms, and so the crucial points concerning storm

effects vis a vis the more general problem of ionospheric variability are

known. These include:

(1) The "worst case' departures of an F-region parameter from average
monthly conditions invariably occur during geomagnetic disturbance.

(2) At most ionospheric sites, storm-time departures from average
conditions exhibit well defined positive and negative phases,
which themselves often have pronounced local time, seasonal and
solar cycle dependencies.

(3) Ionospheric disturbances associated with geomagnetic storms often

show long-lived effects in comparison to geomagnetic parameters.

The ionospheric TEC parameter is well-suited for studying storm effects.

Superimposed-epoch types of analyses have been applied to the problem and
well-defined, quantitative 'correction schemes'" for updating monthly median
predictions are available (Mendillo and Klobuchar, 1979). The standard
deviations of the storm-time characteristic correction curves for a 4-day
storm period are, almost without exception, much larger than the standard
deviations associated with a monthly mean or median pattern. This implies
that for days that are not associated with strong geomagnetic activity, the

artificial restriction of using monthly statistics may be exploited to yield

quantitative and potentially useful information about day-to-day forecasting.

Consider, for example, a 30-day month for which we have ordered the days by

10
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a suitable geomagnetic parameter into six 5-day categories ranging from very
quiet to very disturbed conditions. We denote these 5-day periods as QQ, Q,
q, d, D and DD days. Results of storm effects in the TEC data (essentially
the DD and D days) implicitly tell us something about the remaining days.
For example:

(1) The standard deviations for the QQ to d days must be smaller than

the observed o, for the entire month.

(2) 1If the amplitudes and phases (+ or -) of storm-time corrections

are reasonably well-defined, then at least the dominant phase
of the variations for the non-disturbed days can be inferred.

We have tested these approaches in several ways using data obtained from
the AFGL network of TEC observing sites. These include the latitudinal chain
near 70°PW comprised of sites characterized (geomagnetically) by L=5 (Narssarssuaq)
L=4 (Goose Bay), L=3 (Sagamore Hill/Hamilton) and L=2 (Kennedy Space Flight
Center), as well as the three additional sites near L=2 of Rosman (No. Carolina),
Osan (Korea) and Athens (Greece). 1In all cases, the data base available
covered the declining and minimum portions of the past solar cycle (= 1971-1976).

In the following Chapter, the data obtained from the L=2-5 latitudinal
network are examined in an attempt to show how geomagnetic activity may be
used as a key to specifying the hierarchy of F-region variability contained
in statistically-based ionospheric forecasts. Only sample results are shown
in order to highlight the findings; a complete set of curves describing the
station-by-station, season-by-season and yearly statistical results are

presented in a set of Appendices. 4
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CHAPTER III. A STATISTICAL TREATMENT OF

THE GEOMAGNETIC CONTROL OF
F-REGION VARIABILITY :

The initial search for a geomagnetically-controlled hierarchy to F-

region variability should concentrate on extreme cases, and thus our first

DY S

analysis centered on defining the essential differences between very quiet

days (QQ) and very disturbed days (DD). Hourly values of ionospheric TEC §
data for each site were used to form percentage variations from monthly mean
conditions for the 5-QQ and DD-days of each month. The average diurnal be-
haviors (QQ and DD), averaged over all months, are given in Figure 4 (a)
Narssarssuaq, (b) Goose Bay, (c) Hamilton and (d) KSFC. When examined in

this way, a remarkable degree of consistency emerges in that the QQ and

DD curves are virtually "mirror images' for all local times at all four
stations. The dichotomy does not always extend to precise magnitudes and
phases, nor to the zero percentage line as the '"mirror point" -- but never-
theless it does suggest a strong ordering influence related to geomagnetic
activity. Previous studies have shown that ionospheric storm morphologies

are best ordered by a superimposed-epoch scheme carried out for several days,
and thus a single curve labeled ''Disturbed Day Variation" cannot capture the
true and often multi-phase development of an ionospheric storm (Mendillo, 1978).
The DD curves presented here thus point to the most long-lived effects i

associated with storms -- and therefore the QQ curves describe the absence

L = 2-5 range. At high latitudes, the DD curves show essentially negative

|
of these perturbations. Consider, for example, daytime effects over the ‘
effects while enhancement appear at L = 2. Consequently, the QQ variations ;

|

also exhibit a latitudinally dependent phase change. Thus if one considers

12
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"QQ-1like behavior' versus '"DD-like behavior' then the spatial extent over

which correlations occur may be greatly enhanced. The implication to fore-
casters is obvious, as will be discussed more fully below.
Since ionospheric storm effects have well-known seasonal variationms,
it is not surprising that the QQ behavior also follows a seasonal control.
For example, in Figure 4 (c), the Hamilton QQ/DD curves for all months aver-
aged together show very little variation from monthly mean conditions during
the 10:00 - 16:00 LT period. Figure 5 contains a Summer versus Winter break-
down of the same data base; the amplitudes of the curves are much larger and
of different sign and thus an accurate description of QQ behavior at L = 3
requires a seasonal analysis simply because the storm effects at L = 3 have a
strong seasonal dependence. This is not necessarily the case, however, for
all latitude regions (Mendillo, 1978), as may also be seen in the Appendices.
The results presented in Figure 4 and 5 suggest that a knowledge of
ambient geomagnetic conditions may be sufficient to achieve a meaningful
real-time update to monthly mean predictions of F-region behavior. It would
appear that several implementation schemes for this information should be
considered and tested. For illustration purposes, we concentrate here on
the case where geomagnetic information is available to predict that a day is
probably one of the 5 QQ-days of the month. For the site in question, where ;
Fkt)too(t) is the predicted monthly mean pattern and associated variability,
one could update this value in several possible ways:
(1) Using curves similar to those shown in Figures4 and5 , one could
update P(t) by the appropriate APQQ(Z) and assign a new uncertainty ;
toqq. This type of scheme would require interpolation according to
geomagnetic latitudes, with a full breadkown of seasonal effects

in the QQ(t) patterns and their associated standard deviations OQQ‘

13
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(2)

Thus, each of the QQ days would have a predicted diurnal pattern

changed from F(t) * oo(t) to P(t) + APQQ(t) + UQQ(t). Since OQQ(t)

is demonstrably smaller in magnitude than o, (usually quoted to be
+ 25%), an updated value with reduced uncertainty (say to * 15%,
i.e., a 40% improvement) has been achieved.

An alternate scheme could take advantage of the fact that Figures
4 and 5 show that during certain local time periods and seasons,
the QQ patterns fall well to the positive or negative side of the
mean behavior. Thus knowledge that a certain day is a QQ day
implies that only the positive or negative half of the excursion
associated with * % is likely to occur and updates should be made
accordingly. Under such conditions, the monthly mean based predic-
tion

F(t) * oo(t) would be changed to :

I+

P(t) {1 + SP} Sp for positive effects (1)
2

or

I+

- o
P(t) {1 - -°}) ;P for negative effects. (2)
2

The end result is again a value updated in magnitude, but now with
an uncertainty reduced by 50%. The possibility thus exists for

using simple positive or negative QQ-pattern sectors to achieve

a 50% improvement in forecasting without recourse to a large net-
work of real-time observing sites. If real-time measurements can

be made, the additional possibility exists of using a single observa-
tion in conjunction with QQ patterns (which may be either positively
or negatively correlated over wide latitude spans) to forecast F-
region updates over regions far in excess of simple in-phase

correlation distances.
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CHAPTER IV. CASE STUDIES AT LOW LATITUDES !

As an example of the concepts discussed in the previous sectioms,
Figures 4 and § describe geomagnetic hierarchy effects in the day-to-day
E variability patterns observed at the lower mid-latitnde site Cape Kennedy

1 : (KSFC, L = 2) for the winter season. The average local time disturbance

pattern {SD(TEC,%)} for winter storms at KSFC is given in Figure ga
(Mendillo, 1978). This is a relatively simple pattern of daytime enhance-
ments with only small nighttime depletions for each day of the storm
pattern. The absence of both positive and negative daytime phases causes
the DD-day pattern for Winter months (Fig. 6b) to describe this simple
pattern with a 5-day average of approximately *+207% during the daytime hours.

While this type of correction would suffice for days 2 and 3 of a storm

period, it is factors of 2 to 3 too small a correction for the first day of
a storm. This re-emphasizes the fact that SDi(TEC,LT), i = 1,4 patterns
should be used to update storm periods and not DD-curves.

The character of the QQ curve represents a more realistic description
for day-to-day effects because (1) the standard deviations are lower and
(2) the 5 QQ-days of a month are not usually sequential. To test for the
consistency of the QQ vs DD descriptions implied by Figure 6h,we examined
several Winter month's worth of KSFC total content data. Figure?7 (a,b,c,d)
summarize the analysis for the Winter months of 1974 and 1975. The days of
the month were ordered by IKp and percentage deviations from the monthly
mean were computed for each UT-hour. The vertical scale in Figure 7 shows .
5-day groupings according to LKp and the horizontal axis gives UT/LT steps.

To separate the positive excursions from the negative excursions for easy

visual inspection, cross-hatchings were used for any hour where the deviation
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was zero or positive (i.e., A TEC > 0). The clear areas of Figure 7 there-
fore describe hourly/daily periods where A TEC < 0. Note that the phases of
the A TEC (%) variations in the top portion of Figure 7 are very similar to
those predicted by the QQ-curve in Figure 6b. For example, during the
daytime period (10:00-16:00 LT) when the F-region generally attains its
largest density values (and therefore uncertainties are most important), the
negative values persist on nearly all of the QQ-days shown. As pointed out

in the previous section, knowledge of the plus or minus side of + Oo may

lead to an updated F-region prediction. This may be accomplished by real-
time data, to decide whether a station will respond in either a QQ-like
or DD-like fashion. This would help predict a small portion of the F-region

TEC variability.
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APPENDIX A.

Disturbed (DD) versus Quiet (QQ) Behavior
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APPENDIX B

Disturbed (DD) versus Quiet (QQ) Behavior

at GOOSE BAY
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APPENDIX C

Disturbed (DD) versus Quiet (QQ) Behavior

at SAGAMORE HILL/HAMILTON
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